KPK. PUBLIC SE VICE COMMISSION, PESHAWAR

COMPETITIVE EXAMINATION IN R PROVENCIAL MANAGEMENT SERVICES, 2016

APPLIED MATHEMATICS (PAPER-II)

TIME ALLOWED:- Three Hours

Max. Marks:-100

INSTRUCTIONS:- (a) Selecting TWO questions from section-I and THREE questions from section-II, attempt FIVE questions. ALL questions carry EQUAL marks.

(b). Simple calculator is allowed.

SECTION-I

1. (a) Using method of VARIATION OF PARAMETERS, solve the following differential equation:

$$4y'' + 36y = \cos ec3x \tag{10}$$

(b) Determine the solution of the following differential equation:

$$x^{3} \frac{d^{3} y}{dx^{3}} + 5x^{2} \frac{d^{2} y}{dx^{2}} + 7x \frac{dy}{dx} + 8y = 0$$
 (10)

2. (a) Find the POWER SERIES solution to the following equation:

$$v'' - 2xv = 0 {10}$$

(b) Obtain the solution of the following Boundary Value Problem:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \tag{10}$$

subject to the conditions:

$$u(x,0) = 0,$$
 $u(x,b) = f(x),$ $0 < x < a$

and

$$\frac{\partial u}{\partial x}\Big|_{x=0} = 0, \qquad \frac{\partial u}{\partial x}\Big|_{x=a} = 0 \qquad 0 < y < b$$

3. (a) Find the solution of equation $\frac{\partial^2 u}{\partial x^2} = 4 \frac{\partial u}{\partial y}$ by means of method of SEPARATION OF VAIRIABLES. (10)

(b) Solve the wave equation $a^2 \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2}$, where 0 < x < L, and t > 0 subject to the conditions: (10)

$$u(0,t) = 0$$
 and $u(L,t) = 0$, where $t \ge 0$

and

$$u(x,0) = f(x)$$
, $\frac{\partial u}{\partial t}\Big|_{t=0} = g(x)$, where $0 < x < L$